中教数据库 > Journal of Measurement Science and Instrumentation > 文章详情

基于模糊卡尔曼滤波器的锂电池荷电状态与健康状态预测(英文)

更新时间:2023-05-28

【摘要】针对当前锂电池荷电状态(State of charge, SOC)与健康状态(State of health, SOH)预测精度较低的问题,提出了一种基于模糊卡尔曼滤波器的预测方法。采用非线性二阶电阻电容模型表示锂电池,并通过最小二乘误差优化算法对模型参数进行估计,从而更准确地确定蓄电池容量作为SOH值的基础。扩展卡尔曼滤波器(Extended Kalman filter, EKF)可在初始SOC值未知的情况下对其进行准确预测,而模糊逻辑有助于消除测量和过程噪声。仿真结果表明,在城市测功机驱动计划期间(Urban dynamometer drving schedule, UDDS)测试中最大的SOC估算误差是0.66%;通过离线更新卡尔曼滤波器,可对电池容量进行估计,结果表明,最大估计误差为1.55%,从而有效提高了SOC值的预测精度。

【关键词】

90 2页 免费

发表评论

登录后发表评论 (已发布 0条)

点亮你的头像 秀出你的观点

0/500
以上留言仅代表用户个人观点,不代表中教立场
相关文献

推荐期刊

Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved

京ICP备2021021570号-13

京公网安备 11011102000866号