【摘要】针对传统的贝叶斯网络(Bayesian network, BN)结构学习算法运行效率低、算法易早熟、学习效果不理想等缺点,选取布谷鸟(Cuckoo search, CS)和粒子群(Particle swarm optimization, PSO)智能算法,结合BN结构特点,提出了一种CS-PSO的BN结构学习算法。首先,对CS算法从以下三个方面进行改进:利用最大支撑树来指导CS算法的初始化方向,利用解的适应度来调节解的寻优及舍弃过程,利用PSO算法来进行CS算法的位置更新。其次根据BN的结构特征,将CS-PSO算法应用于BN的结构学习。最后采用chest clinic、 credit和car diagnosis三种经典网络作为仿真模型,进行贪婪算法、 K2算法、 CS算法和CS-PSO算法的建模和仿真比较。结果表明, CS-PSO算法在BN的结构学习中,收敛速度快、收敛精度高且稳定性好,可以更快、更优地得到精确的贝叶斯网络结构模型。
【关键词】
《建筑知识》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《重庆与世界》 2015-07-01
《重庆高教研究》 2015-06-25
《现代制造技术与装备》 2015-07-06
《重庆高教研究》 2015-06-26
Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved
发表评论
登录后发表评论 (已发布 0条)点亮你的头像 秀出你的观点