中教数据库 > Journal of Measurement Science and Instrumentation > 文章详情

CS-PSO算法在贝叶斯网络结构学习中的应用(英文)

更新时间:2023-05-28

【摘要】针对传统的贝叶斯网络(Bayesian network, BN)结构学习算法运行效率低、算法易早熟、学习效果不理想等缺点,选取布谷鸟(Cuckoo search, CS)和粒子群(Particle swarm optimization, PSO)智能算法,结合BN结构特点,提出了一种CS-PSO的BN结构学习算法。首先,对CS算法从以下三个方面进行改进:利用最大支撑树来指导CS算法的初始化方向,利用解的适应度来调节解的寻优及舍弃过程,利用PSO算法来进行CS算法的位置更新。其次根据BN的结构特征,将CS-PSO算法应用于BN的结构学习。最后采用chest clinic、 credit和car diagnosis三种经典网络作为仿真模型,进行贪婪算法、 K2算法、 CS算法和CS-PSO算法的建模和仿真比较。结果表明, CS-PSO算法在BN的结构学习中,收敛速度快、收敛精度高且稳定性好,可以更快、更优地得到精确的贝叶斯网络结构模型。

【关键词】

6898 2页 免费

发表评论

登录后发表评论 (已发布 0条)

点亮你的头像 秀出你的观点

0/500
以上留言仅代表用户个人观点,不代表中教立场
相关文献

推荐期刊

Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved

京ICP备2021021570号-13

京公网安备 11011102000866号